Feature Extraction of Fraudulent Financial Reporting through Unsupervised Neural Networks
نویسندگان
چکیده
The objective of this study is to apply an unsupervised neural network tool to analyze fraudulent financial reporting (FFR) by extracting distinguishing features from samples of groups of companies and converting them into useful information for FFR detection. This methodology can be used as a decision support tool to help build an FFR identification model or other financial fraud or financial distress scenarios. The three stages of the proposed quantitative analysis approach are as follows: the data-preprocessing stage; the clustering stage, which uses an unsupervised neural network tool known as a growing hierarchical self-organizing map (GHSOM) to cluster sample observations into subgroups with hierarchical relationships; and the feature-extraction stage, which uncovers common features of each subgroup via principle component analysis. This study uses the hierarchal topology mapping ability of a GHSOM to cluster financial data, and it adopts principal component analysis to determine common embedded features and fraud patterns. The results show that the proposed three-stage approach is helpful in revealing embedded features and fraud patterns, using a set of significant explanatory financial indicators and the proportion of fraud. The revealed features can be used to distinguish distinctive groups.
منابع مشابه
The Ranking of Fraudulent Financial Reporting By Using Data Envelopment Analysis: Case of Pharmaceutical Listed Companies
Fraudulent financial reporting has been one of the most sensitive issues on the business world. Financial statements that conceal the company's facts have caused great losses to its stakeholders. The ranking of companies based on fraudulent financial reporting is one of the key issues for performance analysis. This study, by using financial variables and the data envelopment analysis methodolog...
متن کاملFinancial Reporting Fraud Detection: An Analysis of Data Mining Algorithms
In the last decade, high profile financial frauds committed by large companies in both developed and developing countries were discovered and reported. This study compares the performance of five popular statistical and machine learning models in detecting financial statement fraud. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements betw...
متن کاملProvide an optimal audit model to reduce fraudulent financial reporting
Fraud in financial reporting and accounting has grown significantly in recent years due to the financial crises created in companies, so that fraud has become a political and economic issue and today the legislature, the accounting profession and the causes The creation of fraud in it as well as the ways to deal with fraudulent behavior in financial statements have received special attention. T...
متن کاملA Back Propagation Artificial Neural Network based Model for Detecting and Predicting Fraudulent Financial Reporting
Fraudulent financial reporting has become an important issue in accounting profession, the implementation of self-assessment system appears as incentives to companies to misstate their financial reports to reduce tax obligation. Fraudulent financial reporting may cause fast losses to government income, as well as losses to the users of financial reports; several recent Studies have examined the...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کامل